ГРИНЧЕНКО
Светлана Геннадьевна

УДК 619:616.34-085.37

БИОХИМИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ СТЕПЕНИ УСТОЙЧИВОСТИ РАСТЕНИЙ ПШЕНИЦЫ К БУРОЙ РЖАВЧИНЕ
(06.01.11 - защита растений от вредителей и болезней)

АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата биологических наук

Голицыно, 1990
Актуальность темы. Увеличение производства зерна остается одной из самых актуальных задач науки экономики. Для решения этой задачи постоянно наращивается производство минеральных удобрений и различных сельскохозяйственных машин, что позволяет заметно поднять культуру земледелия, однако необходимое повышение урожайности зерновых культур все же не достигнуто (Воронков, 1979; Политик, 1986; Федосеев, 1988). Это объясняется, конечно, множеством причин, среди которых не последнее место принадлежит тому обстоятельству, что заболевания продолжают наносить урожай ощутимый урон.

Специалисты вполне обоснованно считают, что выделение сортов, устойчивых к наиболее опасным и распространенными заболеваниям, позволяет резко уменьшить остроту проблемы (Hobson, Chisholm, 1977; Brady et al., 1986) тем более, что применение современных химических средств защиты растений в нашей стране пока еще не получило должного распространения.

Как известно, буря ржавчина - одно из наиболее часто случающихся и приносящих ощутимые потери урожай заболевание пшеницы (Adamov, 1978; Novohatka и др., 1979; Воронков, 1980). Однако процесс создания устойчивых к данному вредителю сортов по ряду причин может быть когда-нибудь остановлен; как верно, масштабы этой работы непрерывно возрастает, а трудоемкость ее заметно не уменьшается.

Между тем эффективность селекции устойчивых сортов пшеницы может быть более высокой, если бы удалось усовершенствовать и упростить методику отбора перспективных образцов. При этом нужно было бы основываться на знании сущности процессов взаимодействия хозяина и паразита. Попытка разработки именно таких лабораторных методов была предпринята при выполнении настоящей диссертационной работы.

Цель и задачи исследования. Основная цель нашей исследовательской работы заключалась в выяснении биохимических критериев оценки степени устойчивости сортов и сортовых образцов пшеницы к бурой ржавчине. В результате этой работы было необходимо обосновать возможность использования биохимических методов для количественного определения степени совместимости патогена и хозяина. Планировалось выполнение следующих этапов:

БИБЛИОТЕКА ВНИИФ
I. Выяснение роли фитогормонов во взаимоотношениях возбудителя буровой ржавчины и растений пшеницы в целях определения возможности использования данных о состоянии гормонального статуса инфицированных растений для оценки степени совместимости партнеров.

2. Изучение возможности использования результатов определения содержания хитина в инфицированных буровой ржавчиной листьях для оценки степени устойчивости к заболеванию сортов пшеницы.

3. Экспериментальное определение круга задач, решение которых возможно при помощи иммуноферментного анализа хрипного белка в инфицированных листьях пшеницы. В частности, подлежало изучить возможность применения этого метода для:

а) определения темпов нарастания грибной биомассы в инфицированных листьях;
б) изучения особенностей генной репрессии у частиц устойчивости сортов пшеницы, различающихся по степени совместимости с патогеном; в) определения степени расчлененности частиц устойчивости растений к буровой ржавчине;
г) определения уровня противоречий активности функций.

Предполагалось, что результаты изучения биохимических методов оценки степени совместимости возбудителя буровой ржавчины с растениями пшеницы могут быть полезны для специалистов-пищевиков и агрономов, участвующих в создании устойчивых сортов и новых функций.

Начальная и академическая ценность работы. Предпринимаемые попытки изучения таких биохимических методов, которые могли бы облегчить и ускорить отбор растений пшеницы, произведенных или индуцированных, могут привести к новому уровню устойчивости к возбудителю буровой ржавчины. Показано, что из всех использованных в исследованиях методов (анализ на этилен, индукция 3-уксусную кислоту, гиббереллин, хитин и грибные витамины) наиболее полезными и перспективными являются определение содержания и динамики накопления хитина инфицированными листьями, характеризуемое своевременно спектрометрической способностью потенциал в конкретной комбинации партнеров, и прямое определение грибного белка в инфицированных листьях при помощи сорбционного метода иммуноферментного анализа. Показано, что с помощью этих биохимических методов мож-
пшеницы P.graminis f. sp. tritici Eriks. et E.Henn.

Инокуляция растений проводили в возрасте 7 суток методом оросительной супензий уредоспор гриба (0,2 мнг/мл) в С, Н%-ном золом тине 20. Контрольные растения опрыскивали С, Н%-ным раствором того же дитергента.

Сборы для биохимических анализов отбирали в первые 10 суток после инокуляции и хранили в жидкое азоте. Интенсивность поражения растений пшеницы буровой ржавчиной оценивали по шкале Мейсона и Джексона (Geleebade, 1971), а также подсчетом количества пустул на первых листьях 20 произвольно выбранных растений.

В позаполном опыте по изучению динамики развития заболевания на частично устойчивых сортах пшеницы растения выращивали на делянках площадью 1 кв.м в 4-кратной повторности с обозначенным пространственной изоляцией. Инокуляцию проводили уредоспорами буровой ржавчины (10 мнг/кв.м), смешанными с талломами, в фазу выхода в трубку. Использовали биотипы следующих физиологических рас: 77, 105, 149 и 192.

Определение степени поражения растений проводили по шкале Петрозева, а также рассчитывали площадь под кривой развития болезни (УКБ). Дополнительной железнобой нити легионифицированные листвы использовали в качестве независимых растений пшеницы, использованных для опытов. Для анализа использовали газо-хроматографический метод, ранее подробно описанный применительно к стеблевой ржавчине пшеницы (Чаркина и др., 1994; Методические указания, 1987).

Для определения количества образуемого листвами этилена использовали свежесорные листва пшеницы исходных сортов. Для измерения использовали газо-хроматографический метод, ранее подробно описанный применительно к стеблевой ржавчине пшеницы (Чаркина и др., 1994; Методические указания, 1987).

Для определения содержания "свободной" ИК в листвах пшеницы использовали методы высокоэффективной жидкостной хроматографии, описанный Е.Н. Артеменко с сотрудниками (1980). Содержание ИК в проростках и непроросших уредоспорах, а также в культуральной жидкости определяли по методу, описанному А.М. Удневым с сотрудниками (1981).

Для определения гидроберелинолепобных веществ в уредоспорах ржавчинного гриба использовали биологический метод, основанный на экстракции раста гидролизом солвата (Frankland, Wareings, 1968; Agricola, 1966; Kefeli и др., 1975). Экстракты из спор, подготавленные в виде суспензии, применяли для анализа при помощи метода, описанного в работе автора (1968) и Barendse (1967), а затем делили на отдельные фракции путем бумажной хроматографии в системе растворителей 1,5 М/Н-бутанол-Н2О-ОН (3:1:1)

Для изучения секреции гидроберелинолепобных веществ прорастающими уредоспорами в биотесте использовали нонсенственно в постоянные спор без разделения их на отдельные фракции при помощи бумажной хроматографии.

Иммунологический анализ грибных антигенов в инфицированных буровой ржавчиной растениях пшеницы проводили по методу прямого конкурентного варианта ИФА, основанного на использовании иммобилизованных грибных антигенов и меченых ферментом противоряжечных антител.

Этот метод разработан ранее применительно к стеблевой ржавчине пшеницы (Шербакова и др., 1988), и отличие нашей процедуры состояло лишь в том, что использовали комбинации, полученную из крови кроликов, иммунизированных интактом проростками спор P.graminis, а антигеном для анализа получали из проросших спор P. recondita. Это оказалось возможным, так как сыворотки из крови кроликов, иммунизированных P.graminis, не обладают видовой специфичностью и, как показано специально проведенные эксперименты, незначительно с белками возбудителя буровой ржавчины точно так же, как и с антигенами возбудителя стеблевой ржавчины.

Количество грибного ядера в листвах определяли по формуле:

\[x = 1,25 \cdot 10^{10^2(-y)} \]

где \(x \) — количество грибного ядера (мкг/г листва), \(y \) — ингибиторное реакции меченых антител с иммобилизованным антигеном (X).

Для определения содержания хитина в тканях инфицированных растений использовали метод, основанный на выделении препарат клетчатых стенок инфицированных растений пшеницы, его гидролиза в соляной кислоте и определении в гидролизате продукта гидролиза хитина с помощью автоматического амилазного анализатора (Методические рекомендации, 1987).

Математическую обработку полученных данных проводили по методам, описанным в работе Адамсона и Эр буквос (1962).
Изучение возможности использования данных о гормональном статусе растений пшеницы, инкустированных возбудителями буровой ржавчины, для определения степени совместимости партнеров. При инкустрации пшеницы буровой ржавчиной у пшеницы Д.И.-Чириковой и соотрудников было обнаружено, что уровень продукции инфицированными листьями также связан с теми тесно связанными между собой фитогормонами, как этилен и ИКК, настолько хорошо отражает степень совместимости того или иного сорта пшеницы с возбудителем буровой ржавчины, что вполне мог служить диагностическим признаком. Мы представили, прежде всего, высказанний метаболизм использования аналогичный подход для определения степени совместимости сортов пшеницы с возбудителем буровой ржавчины. В связи с этим измерили интенсивность образования этилена инфицированными возбудителям буровой ржавчины. Рента сортов пшеницы, среди которых были восприимчивые Тетчер, устойчивые Дмитровская 9-12 и линия Тетчер – Ё 9, а также частично устойчивые Ахилл и Планет.

Вопрос ожидаемым, зарождение растений буровой ржавчиной рассматривалось как незаметный усилением биосинтеза этилена и в случае растений высокой совместимости (сорт Тетчер). Во всем случае, наблюдаемые изменения интенсивности образования этилена не имели очевидной связи со степенью совместимости партнеров, а это могло бы быть результатом того, что ИКК, индуцирующий этилен, не играет такой же важной роли во взаимоотношениях паразита и хозяина, как это имеет место при зарождении растений пшеницы возбудителем стеблевой ржавчины.

В целях проверки этого предположения мы провели сравнительный опыт с растениями, инкустированными возбудителями буровой и стеблевой ржавчины.

Растения пшеницы сортов Литтл Клаб и Тетчер инкустированы соответственно возбудителями стеблевой (раса 21) и буровой (раса 77) ржавчины. Оба вида пшеницы широко использовались в исследованиях по интенсивности гормонального статуса растений, так что и то, и другое явление было возрастными, а это давало возможность сравнить особенности в направлении интересующих нас процессов при инкустрации стеблевой и буровой ржавчины.
видимо, очень важную роль в патогенезе стеблевой ржавчины пшеницы, не имеет определенного значения для таксономически близкого возбудителя бурой ржавчины. Из этого вытекает более низкая смертность, чем у первых, отмечено то, что по заключению индукцируемого ИУК этила, образуемого инфицированными листьями, невозможно судить об устойчивости сортов пшеницы к бурой ржавчине. Иными словами, "встреченный тест", уже разработанный "пленкообразный" системе "пленки-возбудителя стеблевой ржавчины" (Чириков и др., 1994; Умов и др., 1996), в данном случае оказался неприемлемым. Во-вторых, следовало допустить, что взаимодействие возбудителя бурой ржавчины с пленкой осуществляется с участием иных-то иных фитогормонов. Такими факторами совместимости могли бы быть, как нам показалось, гиббереллины.

О возможности участия гиббереллинов в взаимоотношениях возбудителя бурой ржавчины и растений пшеницы свидетельствовало описание в М.Я. Чекуровым и Н.Т. Мироновым (1983) повышение содержания гиббереллиноподобных веществ в листьях восприимчивого сорта пшеницы уже через 12-13 часов после их инфицирования; при этом содержание гиббереллинов в листьях устойчивого сорта пшеницы оставалось неизменным.

Преподложения о том, что гиббереллины способны играть роль горизонтального фактора совместимости возбудителя бурой ржавчины и растений пшеницы, могло получать поддержку в виде данных о содержании гиббереллиноподобных веществ в уродлоспорах гриба. Так в нависающей конусом фракции экстракта из покоящихся спор бурой ржавчины содержание гиббереллинов оказалось очень высоким — примерно 1 мг/кг, однако в спорах стеблевой ржавчины, которые анализировали для сравнения, оно было еще большим — 1,5 мг/кг. В нейтральной фракции экстрактов гиббереллинов обнаружено гораздо меньшее количество — примерно 0,1 мг/кг, что, правда, было превышено содержание гормонов в той же фракции экстракта из спор стеблевой ржавчины, где концентрации этих гормонов составляла 0,05 мг/кг.

Установлено, кроме того, что прорастание спор бурой ржавчины не зависит от количества гиббереллиноподобных веществ в культуральной жидкости. Через 6 часов после начала прорастания спор концентрация гиббереллинов в нейтральной фракции экстракта составила 0,042 мг/мл или в пересчете на массу уродлоспор — 15,9 мкг/г.

Следовательно, уродлоспоры бурой ржавчины содержат значительное количество гиббереллиноподобных веществ, которые могут секвестрироваться в среде при прорастании. Можно полагать, что эти гиббереллины имеют функциональное значение, однако полученные к настоящему времени данные не дают основания для более определенных выводов.

С точки зрения целей нашей работы имеет значение тот вывод, что ни изменение содержания ИУК или гиббереллинов, ни интенсивность биосинтеза этила не могли служить критерием оценки степени совместимости возбудителя бурой ржавчины с растениями пшеницы. Метод, оказавшийся полезным для изучения устойчивости сортов пшеницы к стеблевой ржавчине пшеницы, в данном случае оказался неэффективным.

Определение содержания хитина и инфицированных листвьев как способ выявления степени устойчивости сортов пшеницы к бурой ржавчины. Хитин (полимер β-1-3-D-глюкозамина), который является важным компонентом клеточных стенок грибов, практически отсутствует в растительных тканих (Mayama et al., 1975; Toppan et al., 1976), что в ряде случаев возможность судить о темпе накопления массы гриба в инфицированных растениях именно по содержанию хитина (Ride et al., 1971; Wu et al., 1975). Это давало основание считать, что определение концентрации хитина в растениях пшеницы, инфицированных возбудителем бурой ржавчины, также позволяет судить о степени совместимости партнеров.

В эксперименте использовали растения пшеницы, различающиеся по своему отношению к возбудителю бурой ржавчины: универсально восприимчивый сорт Татчел, его местную линию с геном устойчивости Le 9, характеризующимся высокой устойчивостью к склеротиниэозу {Fusarium arabicum}, а также три числа устойчивых сортов зарубежной селекции — Планета, Ахилл и Фортун. Судя по динамике образований пустых заболевание развивалось наиболее интенсивно на универсально восприимчивом сорт Татчел, в то время как на линиях местной линии Татчел — Le 9, характеризующихся высо-
- II -

сведения о динамике накопления хитина инфицированными лиственными могут, вероятно, свидетельствовать о степени совместимости возбудителя бурой ржавчины с растением-хозяином и во всех случаях — характеризовать скорообразующую способность патогена в конкретной комбинации партнеров. Разумеется, при подобной оценке особую важность приобретают правильный подбор восприимчивых сорта и обеспечение идентичных условий инокуляции и последующего развития заболевания.

Иммуноферментный анализ (ИФА) грибных антигенов инфицированных бурой ржавчиной растений пшеницы. Как следует из предыдущего раздела, тестирование по содержанию хитина скорообразующая способность гриба не во всех случаях дает адекватное представление о степени совместимости партнеров.

Представлялось желательным изучение более универсального критерия оценки степени совместимости пшеницы с возбудителем бурой ржавчины. Таким критерием мог бы служить темп накопления грибной биомассы в инфицированных лиственчиках пшеницы. Как это показано исследованиями, проведенными ранее со споровой ржавчиной пшеницы (Найденова, 1988). Именно указанные исследования дают доказательство того, что динамика накопления биомассы паразитического гриба в растительных тканях является интегральным показателем, который лучше других свидетельствует о характере взаимоотношений с растением-хозяином.

В одном из первых экспериментов инфицирование растений щитовидным бурой ржавчиной, на протяжении 8 суток ежедневно определяли содержание грибных антигенов с помощью ИФА. Полученные в этом опыте данные убедили в том, что темп формирования специфических антител в инфицированных лиственчиках находится в зависимости от совместимости партнеров (табл.2).

В табл. 2 показаны числовые данные о сорте (табл.2). Совершенно иная картина наблюдалась в случаях полной несовместимости патогена и хозяина (линия Татчера – 9), где гриб практически не развивался (табл.2). Однако более интересно, по изучению, результаты получены при анализе сортов, характеризующихся частичной совместимостью к бурой ржавчине. Все эти сорта (Тур-
Таблица 2

<table>
<thead>
<tr>
<th>Сорт</th>
<th>количества инфекционных пыльцев (mg/m²)</th>
<th>после инкуляции через 1 сутки (mg/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Татчел</td>
<td>0,05</td>
<td>0,75</td>
</tr>
<tr>
<td>Татчел-21</td>
<td>0,09</td>
<td>0,75</td>
</tr>
<tr>
<td>Татчел-49</td>
<td>0,06</td>
<td>0,75</td>
</tr>
<tr>
<td>Татчел-78</td>
<td>0,09</td>
<td>0,75</td>
</tr>
<tr>
<td>Татчел-128</td>
<td>0,05</td>
<td>0,75</td>
</tr>
<tr>
<td>Татчел-168</td>
<td>0,05</td>
<td>0,75</td>
</tr>
<tr>
<td>Татчел-188</td>
<td>0,05</td>
<td>0,75</td>
</tr>
<tr>
<td>Татчел-218</td>
<td>0,05</td>
<td>0,75</td>
</tr>
<tr>
<td>Татчел-228</td>
<td>0,05</td>
<td>0,75</td>
</tr>
</tbody>
</table>

Таблица 2. Динамика накопления грибного мицелля в листьях сортов пшеницы, различающихся по степени устойчивости и сорту пшеницы (раса 77, 12, 6, 16, 18, 26, 28, 32, 41, 42, 44).

Таким образом, накопление грибного мицелля происходило в листьях всех сортов, которые известны как "средственно ржавеющие" или характеризующиеся относительно низкой площадью под кривой, описывающей динамику развития болезни.

Сказанное позволило сделать вывод о том, что ИФА ржавчинах антителен в листьях молодых растений пшеницы может способствовать накоплению "средственно ржавеющих" или частиц устойчивых сортовых в процессе селекции и обеспечить необходимые в таких случаях фитопатологические (или иммунологические) исследования (Johnson, 1978, 1983; Pande et al., 1978; Lee, 1985; Perez, Rohlen, 1988; Terabi, Mannere, 1988). Определение накопления инфекционных пыльцев на пшенице гриба "средственно ржавеющих" сортов, кроме того, позволяет составить представление о сравнительной продолжительности латентного периода, служащего одним из факторов частичной устойчивости. В самом деле, из данных табл.2 следует, что в листьях частично устойчивого сорта Ахилл бурный рост мицелля P. recondita наступает на 13 сутки, а в листьях восприимчивого сорта Татчел - на 21 сутки.

Далее следует отметить, что с помощью ИФА определяют степень восприимчивости частичной устойчивости. Подобная задача диктовалась, прежде всего, практическими соображениями, ибо только восприимчивость частичной устойчивости может обеспечить длительность сохранения этого свойства сорта на фоне непрерывной модификации популяции патогена (Farleigh, 1988).

Выводы 7-дневных растений пшеницы инкубировали уредобо-рами четырех биотипов различных физиологических рас (77, 52, 25, 44) с несходным спектром вирулентности. Через 5, 6 и 8 дней после инкуляции количеством образовавшегося за соответствующий период вегетативного мицелля ржавчины определяли иммуноферментным методом. Полученные результаты свидетельствовали о быстром накоплении массы мицелля ржавчины всех четырех биотипов в ли-
стах изостимичного сорта Татчар. В то же время в листьях частично устойчивых сортов темп нарастания грибной массы оказался существенно более низким (табл. 3). При этом выяснилось, что уровень ресоплетичности у изостимых сортов далеко не одинаков. Например, в листьях пшеницы сорта Фортуна рост мицелия ржавчины биотипов {Rc} 25 и 77 тормозился гораздо более резко, чем двух других биотипов. В листьях сорта Гамут, особенно сильно тормозился рост биотипов рс 77 и 52 (табл. 3). В этих случаях наблюдалась типичная резистентность к болезни. Следовательно, устойчивость сортов Фортуна и Гамут имеет черты ресоплетичности.

С другой стороны, в листьях сортов Ахилл и Букет рост гриба всех изостимых биотипов тормозился (по сравнению с изостимичным Татчар) почти в одинаковой мере (табл. 3). Несмотря на то, что у всех сопоставленных типов инфекции оставался высоким (балл 4), то можно с большой долей уверенности относить сорта Ахилл и Букет к числу частично устойчивых сортов с выраженной ресоплетичностью. Следует предполагать, что такая устойчивость оказалась длительной, поскольку вероятность появления в популяции вирулентного для этих сортов биотипа в настоящее время практически невозможна. Кроме того, такой вывод был бы еще более верным, если бы в исследовании использовались не 4, а 10-20 различных биотипов, но на определение видимость о принципиальной возможности получения при помощи ИФА и таких данных.

Таким образом, прямое определение грибных антител в иммуноферментированных листьях не только дает возможность судить о степени совместимости возбудителя бурой ржавчины и растений пшеницы, но и позволяет выявить проявление частичной устойчивости сортов бурой ржавчины к этому заболеванию, а также констатировать выраженность ее ресоплетичности.

Видимо, этот метод способен существенно повысить эффективность иммунофенологических исследований при селекции устойчивых к бурой ржавчине сортов пшеницы.

Таблица 3

<table>
<thead>
<tr>
<th>Сорт</th>
<th>Татчар</th>
<th>Фортуна</th>
<th>Гамут</th>
<th>Ахилл</th>
<th>Букет</th>
</tr>
</thead>
<tbody>
<tr>
<td>Время после инокуляции</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Источник: [Иванов, 2022]
Оценка устойчивости сортов пшеницы к биовым методом. Материалы двух предыдущих разделов свидетельствовали о том, что инфекционные процессы частично устойчивых к биовому развитию сортов пшеницы отличаются от восприимчивых существенно более низкими темпами накопления хлорофилла и грибной биовысокой. Однако нами изучено не настолько много частично устойчивых сортов, чтобы сформулировать обобщенные выводы. Кроме того, против использования проростков пшеницы при оценке устойчивости часто возникают возражения, основанные на том, что при этом уходят из поля зрения такие явления, как "вторичная устойчивость", имеющаяся в отдельных случаях. Однако, как показывают некоторые исследования, это значение (Poyntz, Hyde, 1937). Все это делает желательным получение дополнительных данных о том, что результаты биовысокого тестирования проростков могут давать ежедневное представление об устойчивости растений тех же сортов на протяжении всего вегетационного периода в реальных полевых условиях.

На опытном поле ВНИИС было посеяно пшеницу универсально восприимчивого сорта Тетчер и частично устойчивые сорта Планет, Ахилл и Турбо. Для инокуляции растений в фазе выхода из грубку использовались свежесобранные урожайные массы четыреих физиологических рас: 77, 105, 149 и 192. Таким образом, в инокуляме присутствовал максимум возможных рас вирусности.

Полученные данные суммированы в таблице 4. Все изучавшиеся сорта реагировали на инокулям как восприимчивые: были поражены по началу Мейноса и Дженкина - 4 во всех случаях, за исключением комбинации "сорт Ахилл - раса 149" (тип реакции 0). Судя по площади под кривой развития болезни (ПКРБ), для всех частично устойчивых сортов при инфицировании любым инокулем было характерно "позднее развитие" (табл.4). Это могло расцениваться как непостоянство восприимчивости частично устойчивых сортов Планет, Ахилл и Турбо. Именно поэтому не кажется удивительным, что указанные сорта реагировали на сменение инокула (смена инокула в разных долях всех четырех биотипов) так же, как и на каждый биотип в отдельности. Замедленное (в сравнении с восприимчивым эталоном) развитие заболевания в полевых условиях.
ров интенсификации зернового хозяйства (Политков, 1986). Среди них заметное место занимает, по мнению ряда исследователей, ингибиторы биосинтеза стероидов. Они действуют на паразитические грибы примерно так же, как эндогенные факторы частичной устойчивости растений, поскольку вызывают или эффекты проявляются в подавлении роста мицелия и формировании инфекционных структур (Kuo et al., 1981; Kato, 1985). Следовательно, методы регистрации фунгицидной активности вновь синтезируемых химических соединений, предполагающие оценку их влияния на прорастающие споры, не могут быть адекватными, из-за чего возникает возможность признания неперспективными потенциально фунгицидных соединений. В этой связи мы предположили, что изученные нами методы определения темпов накопления биомассы ржавчинного гриба в тканях инфицированных листьев могут оказаться полезными и при скрининге фунгицидов, и при изучении различных особенностей реализации их физиологической активности. Предположение было проверено в экспериментах с использованием некоторых известных фунгицидов, эффективных против бурой ржавчины пшеницы.

<table>
<thead>
<tr>
<th>Фунгицид в концентрации 4 мг/л (по д.в.)</th>
<th>Подавление заболеваний (%), определенное на 3 сутки после инокуляции растений</th>
<th>по количеству пустул</th>
<th>по содержанию мицелия</th>
<th>по концентрации хитина</th>
</tr>
</thead>
<tbody>
<tr>
<td>Тилт</td>
<td>60,8</td>
<td>61,9</td>
<td>57,8</td>
<td></td>
</tr>
<tr>
<td>Байлетон</td>
<td>53,7</td>
<td>45,9</td>
<td>50,3</td>
<td></td>
</tr>
<tr>
<td>Трифим</td>
<td>24,0</td>
<td>24,4</td>
<td>34,5</td>
<td></td>
</tr>
</tbody>
</table>

Вначале были подобраны концентрации фунгицидов, при которых они оказывают существенное влияние на развитие мицелия, не подавляя его на 100%, а также выявлены условия постановки экспериментов, позволяющие вести намеченные наблюдения. Выявлено, что данные о сравнительной фунгицидной активности тилта, байлетона и трифима могут быть получены при использовании их в концентрации 4 мг/л, причем наилучшие результаты достигались опрыскиванием растений пшеницы через 3 суток после инокуляции уредоспорами возбудителя бурой ржавчины. Количество анализ грибного мицелия, проведенный через 6 суток после инокуляции растений, показал, что наиболее фунгицидную активность проявил трифим, подавляющий развитие мицелия на 80,4%, наименьшую — тилт, подавляющий рост мицелия на 27,2%.

С помощью иммуноферментного анализа удалось определить динамику накопления мицелия ржавчины в листьях пшеницы, обработанных тремя названными фунгицидами.

Подтверждено, что трифим в концентрации 4 мг/л относительно слабо влияет на развитие патогена, тогда как тилт в той же концентрации явино замедляет накопление ржавчинного мицелия, как бы продлевая ходовый период; в результате этого образование заметных количеств мицелия начиналось позже и протекало в течение последующего периода на гораздо более низком уровне, чем в контроле. Байлетон показал на развитие гриба примерно такое же, но несколько более слабое воздействие, чем тилт.

Существенно, что при определении степени подавления заболеваний по содержанию в обработанных растениях грибного мицелия и хитина были получены результаты, практически не отличающиеся от данных фитопатологического анализа (табл. 5).

Иммуноферментный анализ дает возможность получить более полную токсикологическую характеристику изучаемого фунгицида. Так, определение зависимости темпов накопления и мицелия от дозы трифима позволило рассчитать концентрацию, при которой рост гриба подавляется на 50% (ED 50). Она составила 27,4 ± 1,7 мг/л. Определение ED 50, проведенное с помощью иммуноферментного метода, основанного на определении содержания хитина, который является конституентом гриба и отсутствует в растительных тканях, дало близкие результаты — 17,3 ± 1,5 мг/л.

Таким образом, иммуноферментный анализ грибных антителов и определение хитина в инфицированных растительных тканях могут использоваться в токсикологических исследованиях, в частности, при изучении сравнительной эффективности системных фунгицидов.
Выводы

1. Показано, что о степени совместимости возбудителя буровых раков с реактивным пиелитом можно судить по результатам определения темпов нарастания массы грибов в инфицированных листьях.

2. Динамика содержания хитина, свойственного возбудителю буровых раков и практически стоящего в тканевой пиелит, дает адекватное представление о степени совместимости партнеров, однако увеличение содержания хитина в инфицированных листьях становится очевидным уже на 4-5 сутки после инокуляции, т. е. в период формирования опорной ткани.

3. Иммунофенотипный анализ (IFA) ржавчинных мицеллия в инфицированных листьях характеризуется высокой чувствительностью (до 0,25 Мкг "грибного" белка на 1 г ткани), причем реактивные белки не влияют на результаты исследования. Это дает возможность использовать ИФА для количественного определения массы грибов в листьях уже через 2-3 суток после инокуляции.

4. С помощью ИФА было выявлено определение степени устойчивости сорта пшеницы к сорной раковине, причем данные о темпах нарастания массы грибов в инфицированных листьях молодых растений хорошо коррелировали с динамикой развития болезни в полевом опыте.

5. Извещение при помощи ИФА характера развития мицеллии в инфицированных листьях может способствовать ведению сортоопробования, обладающих высокой устойчивостью. В частности, такие исследования позволяют охарактеризовать относительную роли микрофлоры, превращение "свеженного ржавчина" (slow growing) и уровень рассеивания устойчивости этого типа.

6. Биохимические методы определения скорости нарастания массы грибов в инфицированных листьях оказались пригодными для быстрой оценки сравнительной эффективности противораковиных фунгицидов.

7. Предположено о том, что одним из критериев совместимости возбудителя буровой раков с растениями пшеницы может быть явление гормонального статуса, не подхватившего экзотермического подтверждения. Установлено, однако, что споры Rh. rescopida при прорастании секретируют гиббереллиноводоробные вещества, функциональное значение которых предстоит эмпирическим

Список работ по материалам диссертации

Po материалам диссертации подготовлены методические рекомендации "Биохимические методы оценки устойчивости растений пшеницы к буровой раковине", одобренные во II отделения растениеводства и смикозах Васкн.

Л - 49173 Поступлено в печать 20.03.90г.
Формат 60x90/16 Заказ 536 Тираж 100

Москва. Типография Васкн.